Signal-Processing Framework for Ultrasound Compressed Sensing Data: Envelope Detection and Spectral Analysis
نویسندگان
چکیده
منابع مشابه
A Compressed Sensing Signal Processing Research
In the classical Shannon/Nyquist sampling theorem, information is not lost in uniformly sampling a signal, signal must be sampled at least two times faster than its bandwidth. Because of the restriction of the Nyquist rate, it end up with too many samples in many applications, and it becomes a great challenge for further transmission and storage. In recent years, an emerging theory of signal ac...
متن کاملNoise driven compressed sensing method for space time signal processing
In contrary to the existing work related with compressed sensing based STAP technique, which adopts the original sensing matrix, the proposed noise driven compressed sensing method is to construct a new sensing matrix with weak coherence through incorporating the measurement noise. The proposed method tries to build an equivalent system of the classical model in compressed sensing, resulting in...
متن کاملNoisy Signal Processing Research based on Compressed Sensing Technology
Compressed sensing (CS) is a kind of sampling method based on signal sparse property, it can effectively extract the signal which was contained in the message. In this study, a new noise speech enhancement method was proposed based on CS process. Voice sparsity is used to this algorithm in the discrete fast Fourier transform (Fast Fourier transform, FFT), and observation matrix is designed in c...
متن کاملMultiarray Signal Processing: Tensor decomposition meets compressed sensing
We discuss how recently discovered techniques and tools from compressed sensing can be used in tensor decompositions, with a view towards modeling signals from multiple arrays of multiple sensors. We show that with appropriate bounds on a measure of separation between radiating sources called coherence, one could always guarantee the existence and uniqueness of a best rank-r approximation of th...
متن کاملComparative Analysis of Sparse Signal Reconstruction Algorithms for Compressed Sensing
Compressed sensing (CS) is a rapidly growing field, attracting considerable attention in many areas from imaging to communication and control systems. This signal processing framework is based on the reconstruction of signals, which are sparse in some domain, from a very small data collection of linear projections of the signal. The solution to the underdetermined linear system, resulting from ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Sciences
سال: 2020
ISSN: 2076-3417
DOI: 10.3390/app10196956